

Royal Netherlands Meteorological Institute Ministry of Infrastructure and the Environment

Tandem ASCAT winds and climatologies

European Commission

Ad Stoffelen

Anton Verhoef, Jeroen Verspeek, Jur Vogelzang, Tilly Driesenaar, Gerd-Jan van Zadelhoff, Marcos Portabella, Wenming Lin

KNMI Scatterometer Team EUMETSAT OSI SAF, NWP SAF, EU MyOcean, EU NORSEWIND

NWP Ocean Calibration A versus B

0.6

0.4

0.2

0.0

-0.2

-0.4

-0.6

-0.8∟ 25

leftfore

leftmid

leftaft

rightfore

rightmid

rightaft

35

40

45

30

3₀(m-s) (dB)

AWDP-B

www.knmi.nl/scatterometer

- AWDP-B on 12/11/'12
- AWDP-B for MetOp-B very similar to AWDP-A for MetOp-A
- AWDP without correction for ASCAT-B shows enhanced MLE residual and speed bias
- NOC provides improved cone positions and more uniform quality winds

A versus B

Comparison of ASCAT A/B winds over Atlantic tropical ocean

PDF of ASCAT A/B collocations for wind speed (left panel) and wind direction (right panel) respectively. Low latitude, i.e., -10°<lat<10°

ASCAT-A and ASCAT-B come together

(c) EUMETSAT/KNMI

Summary on B 💩

- Very grateful for ASCAT-B
- AWDP-B switched on and made available soon after commissiong
- NWP Ocean Calibration helps (as for A)
- Verification against ECMWF, buoys, and flags and MLE statistics very similar indeed to AWDP-A for ASCAT-A
- 25-minute orbital separation would deliver more tropical coverage
- Explore extended space and time coverage
 You may support more coverage

L3 Wind product example

GLO-WIND_L3-OBS_METOP-A_ASCAT_25_ASC_20110910.nc

GLO-WIND_L3-OBS_METOP-A_ASCAT_25_DES_20110910.nc

Wind atlas based on ASCAT L3

Ship traffic

- Rotterdam
 anchorage
- Shipping lanes appear in wind climate too at low winds
- As well as platforms
- R&D needed

Wind climate affected by structures

North Sea Kp

Structures near harbour and in Channel?

Cities over land clearly visible

Summary

- MetOp-B operational
- Released AWDP-B
- Use full resolution product for 6.25-km product and QC: rain, structures at sea ...
- Further exploit Kp, MLE
- L3 products will be extended
- Climate maps will account for sampling deficits due to QC (rain, structures at sea)
 - Replace by NWP
 - Reference to NWP

Sea ice edge leads? Ice bergs?

Hamming

ASCAT plans

- Converge to one 25-km product and one coastal 12.5-km product for both ASCAT-A and ASCAT-B (merge EARS)
- •6.25-km product
- •ASCAT-B (prime) production parallel to ASCAT-A
- Update coastal 12.5-km product to new EUMETSAT full resolution product and Kp formulation
- Validation of coastal product with SAR backscatter and Doppler (Marivi Tello)
- Investigate ASCAT performance in rain (Wenming LIN; Marcos Portabella, David Weissman)
- CMOD6; CMOD5na + MLE optimization (Gerd-Jan van Zadelhoff)
- Update visualization on web with overlapping earth-fixed frames
- ASCAT, (and QSCAT, ERS) reprocessing
- Extend ASCAT L3 to OSCAT and stress derivatives in EU MyOcean2
- Training
- EU MyWave, OWI
- ESA eSurge

Strengths / Limitations Scatterometer / Passive

- Excellent precision, mature algorithms, complete coverage
- Small scales (25 km), order better than NWP Since 1991 vector winds
- Intercalibration, accuracy assessment speed scale Calibration above 30 m/s (truth ?) Rain (bias) for Ku band and passive systems Temporal coverage does not match scales (yet) Low spatial resolution (physical processes) Ambiguous direction retrieval Structures/signals at sea

Wind speed (m/s)

Wenming Lin & Marcos Portabella

CMOD6

- Craig's diagnostic
- MLE
- Simulate cone based on known noise contributions

Improving the wind cone

GJ van Zadelhoff, A Stoffelen, & C. Anderson

- cmod5.n/6 retrieve accurate winds speeds for nearly all winds
- Low wind speeds show the largest errors.
- 6 months of Atlantic ocean data from ASCAT are used to look into this issue.

The problem is divided into a number of steps. First the observed width in Δz (fore-cross) and Δy is compared to cmod6 in both incidence angle and x

$$x = \frac{s_{fwd}[Z] + s_{aft}[Z]}{\sqrt{2}}$$

- Width of the cone improves, especially for small wind speeds
- The absolute value (Z) of the new cone for small x is still too small (work in progress)
- Wind speed and wind direction information has to be included to fix the measurements to u₁₀ relationship.

ASCAT ice age

ASCAT

ASCAT sea ice age 2008

<u> 1997</u>

WVC intercalibration

- Triple collocation using all ASCAT-12.5 collocations from Oct 2008 to March 2012
- Error standard deviations in m/s w.r.t. scatterometer scales

	Buoy		ASCAT		ECMWF	
[m/s]	σ_u	$\sigma_{_{\mathcal{V}}}$	σ _u	$\sigma_{_{\mathcal{V}}}$	σ_u	$\sigma_{_{\mathcal{V}}}$
Old	1.178	1.211	0.656	0.798	1.484	1.502
New	1.170	1.203	0.647	0.764	1.482	1.503

- Wave-like front with closed low to the left (ASCAT pass at 00:18 GMT)
- HiRLAM position (00 GMT) too far NW (run 18Z+6h)
- ASCAT ambiguity removal error
- All flags to the N of the black line should be turned by 180 degrees
- MLE evidence

A vs ECMW

- Orbits 31193-31208
- SDs given
- AWDP-A

≻Excellent

quality

B vs **ECMWF** • Orbits 507 -522

- Same day as A
- AWDP-A (no corrections)

AWDP runs Ocean data from 20121112 12:00 to 201214

AWDP QC

General QC characteristics very

×

Current products

- ASCAT 25 km A operational B operational
- 12.5 km coastal A operational B operational
- ASCAT 12.5 km
 A operational
 no B demo
- ASCAT EARS 2x
 A operational
 B operational
- OSCAT 50 km operational
- OSCAT 25 km
 demo
- HY-2A 25 km R&D

Recommend simplification, e.g., no added value in ASCAT 12.5 km winds

OSCAT OWDPv1.3 vs ECMWF

- SDs given
- All 50-km WVCs
- With σ^0 corrections
- Range correction NSCAT3
- Better than without NSCAT3 and corrections
- Some less extreme winds > 15 m/s
- Direction error at 90 degrees decreased

Collocation 1h, 25km, Jan-Mar 2012

OSCAT 😹 25-km grid

- Development of 25 km product based on Level 1B from ISRO (cooperation with NOAA) or ISRO L2A
- Await further ISRO analysis
- Improvement of backscatter calibration (NOC) and QC
- Improvement of sea ice screening model
- •Coastal ?
- Release of OWDP software in the NWP SAF
- Access to operational NRT wind is arranged on high level in a coordinated way (JSRO, EUM, NOAA, NASA, ...)

- OWDP as used for QSCAT and OSCAT
- -1.7 dB σ^0 corrections
- -0.0001 linear outer beam correction
- All WVCs
- SDs given
- > No speed bias
- Rain issue reduced
- Scores similar to QScat and OSCAT

NSOAS L2B vs ECMWF

- SD of difference given in each panel
- All WVCs
- No land, no sea ice
- Rain effect visible
- Ambiguity removal issues
- Many flag bits zero

Overview ECMWF comparisons

	NSOAS	OWDP all	OWDP no outer	OWDP* no outer	OWDP OSCAT
Number	685672	715592	559557	520554	284703
Bias (m/s)	-0.35	0.17	0.21	1.81	0.19
SD speed (m/s)	1.69	1.45	1.48	1.58	1.38
SD dir. (deg.)	45.11	10.72	10.58	10.80	9.78
SD u (m/s)	4.49	1.46	1.44	1.64	1.37
SD v (m/s)	3.86	1.45	1.44	1.67	1.35

KNMI OWDP shows very similar performance for OSCAT and HY-2A after simple HY-2A corrections

- KNMI OWDP shows more data than NSOAS, but obtains good speed verification (little rain contamination left)
- Wind direction of NSOAS needs attention
- Not sure about quality flags

<u>kök</u>

Summary

- Make MetOp-B operational soon
- Release AWDP B part soon
- Need full resolution product for 6.25-km product and QC: rain, structures at sea ...
- Exploit Kp, MLE
- OSCAT 25-km product
- Release OWDP
- Develop confidence in HY2A with NSOAS

Collocation MotOn-A&R

lat/lon collocation for ASCAT A+B

2 orbits of A and B Only ocean wvc_quality all right $\Delta t = 48/52$ minutes $\Delta x = 10$ km Total number collocations =6691

Collocation MetOp-A&B

